

CMIS 102 Hands-On Lab

Week 8

Overview

This hands-on lab allows you to follow and experiment with the critical steps of developing a program including the program description, analysis, test plan, and implementation with C code. The example provided uses sequential, repetition, selection statements, functions, strings and arrays.

Program Description

This program will input and store meteorological data into an array. The program will prompt the user to enter the average monthly rainfall for a specific region and then use a loop to cycle through the array and print out each value. The program should store up 5 years of meteorological data. Data is collected once per month. The program should provide the option to the user of not entering any data.

Analysis

I will use sequential, selection, and repetition programming statements and an array to store data. I will define a 2-D array of Float number: Raindata[][] to store the Float values input by the user. To store up to 5 years of monthly data, the array size should be at least $5*12 = 60$ elements. In a 2D array this will be RainData[5][12]. We can use #defines to set the number of years and months to eliminate hard-coding values.

A float number (rain) will also be needed to input the individual rain data.

A nested for loop can be used to iterate through the array to enter Raindata. A nested for loop can also be used to print the data in the array.

A array of strings can be used to store year and month names. This will allow a tabular display with labels for the printout.

Functions will be used to separate functionality into smaller work units. Functions for displaying the data and inputting the data will be used.

A selection statement will be used to determine if data should be entered.

Test Plan

To verify this program is working properly the input values could be used for testing:

Test Case	Input	Expected Output
1	Enter data? = y 1.2 2.2 3.3 2.2 10.2 12.2 2.3 0.4 0.2 1.1 2.1	year month rain 2011 Jan 1.20 2011 Feb 2.20 2011 Mar 3.30 2011 Apr 2.20 2011 May 10.20 2011 Jun 12.20 2011 Jul 2.30 2011 Aug 0.40 2011 Sep 0.20 2011 Oct 1.10 2011 Nov 2.10 2011 Dec 0.40

0.4	2012	Jan	1.10
1.1	2012	Feb	2.20
2.2	2012	Mar	3.30
3.3	2012	Apr	2.20
2.2	2012	May	10.20
10.2	2012	Jun	12.20
12.2	2012	Jul	2.30
2.3	2012	Aug	0.40
0.4	2012	Sep	0.20
0.2	2012	Oct	1.10
1.1	2012	Nov	2.10
2.1	2012	Dec	0.40
0.4	2013	Jan	1.10
0.2	2013	Feb	2.20
1.1	2013	Mar	3.30
2.2	2013	Apr	2.20
3.3	2013	May	10.20
2.2	2013	Jun	12.20
10.2	2013	Jul	2.30
12.2	2013	Aug	0.40
2.3	2013	Sep	0.20
0.4	2013	Oct	1.10
0.2	2013	Nov	2.10
1.1	2013	Dec	0.40
2.1	2014	Jan	1.10
0.4	2014	Feb	2.20
1.1	2014	Mar	3.30
2.2	2014	Apr	2.20
3.3	2014	May	10.20
2.2	2014	Jun	12.20
10.2	2014	Jul	2.30
12.2	2014	Aug	0.40
2.3	2014	Sep	0.20
0.4	2014	Oct	1.10
0.2	2014	Nov	2.10
1.1	2014	Dec	0.40
2.1	2015	Jan	1.10
0.4	2015	Feb	2.20
0.2	2015	Mar	3.30
1.1	2015	Apr	2.20
2.1	2015	May	10.20
0.4	2015	Jun	12.20
0.2	2015	Jul	2.30
1.1	2015	Aug	0.40
2.1	2015	Sep	0.20
0.4	2015	Oct	1.10
0.2	2015	Nov	2.10
1.1	2015	Dec	0.40
2.1	Please try the Precipitation program again.		
0.4			

		Please try the Precipitation program again.
--	--	---

C Code

The following is the C Code that will compile and execute in the online compilers.

```

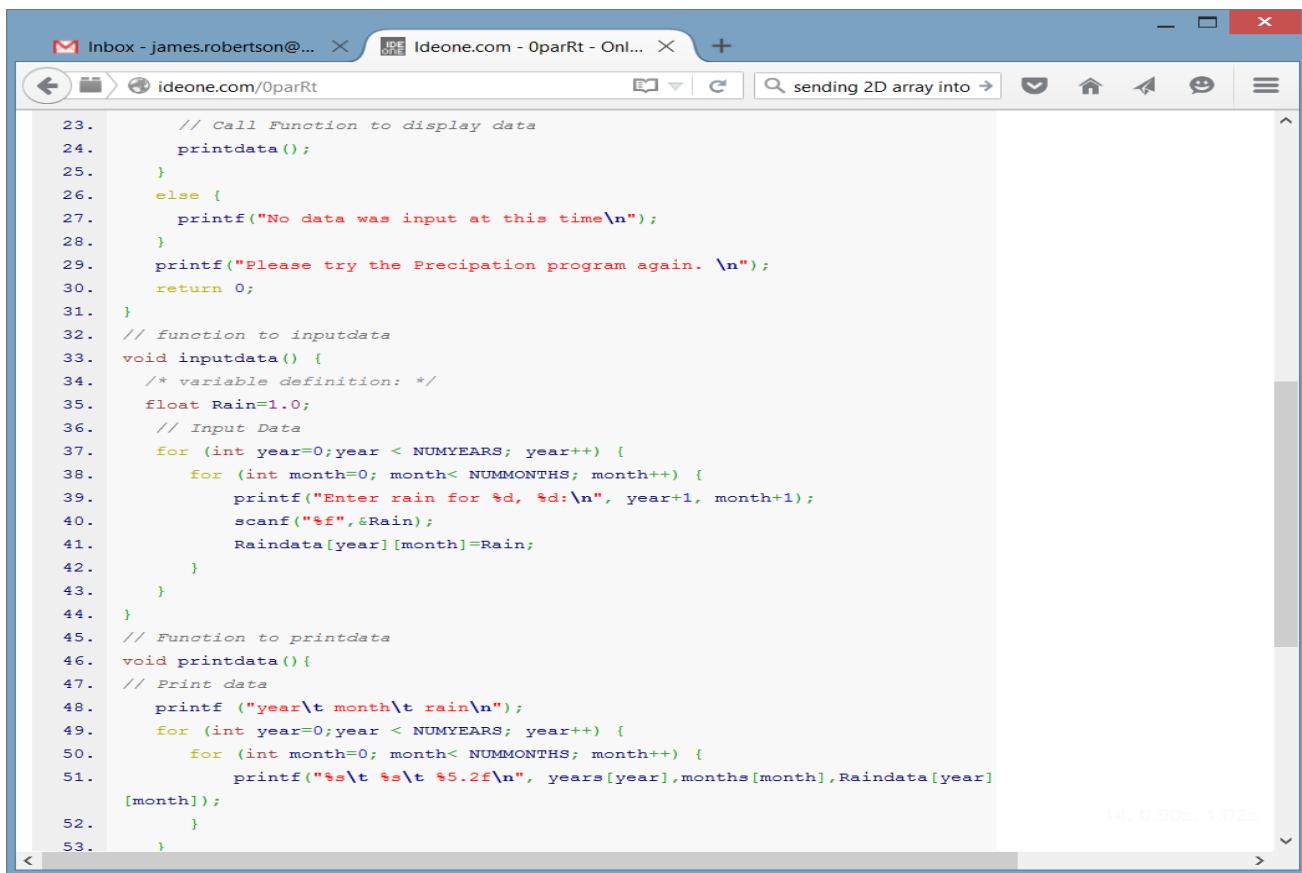
// C code
// This program will input and store meteorological data into an array.
// Developer: Faculty CMIS102
// Date: Jan 31, XXXX
#define NUMMONTHS 12
#define NUMYEARS 5
#include <stdio.h>

// function prototypes
void inputdata();
void printdata();

// Global variables
// These are available to all functions
float Raindata[NUMYEARS][NUMMONTHS];
char years[NUMYEARS][5] = {"2011", "2012", "2013", "2014", "2015"};
char months[NUMMONTHS][12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
int main ()
{
    char enterData = 'y';
    printf("Do you want to input Precipitation data? (y for yes)\n");
    scanf("%c",&enterData);
    if (enterData == 'y') {
        // Call Function to Input data
        inputdata();

        // Call Function to display data
        printdata();
    }
    else {
        printf("No data was input at this time\n");
    }
    printf("Please try the Precipitation program again. \n");
    return 0;
}
// function to inputdata
void inputdata() {
    /* variable definition: */
    float Rain=1.0;
    // Input Data
    for (int year=0;year < NUMYEARS; year++) {
        for (int month=0; month< NUMMONTHS; month++) {
            printf("Enter rain for %d, %d:\n", year+1, month+1);
            scanf("%f",&Rain);
            Raindata[year][month]=Rain;
        }
    }
}

```

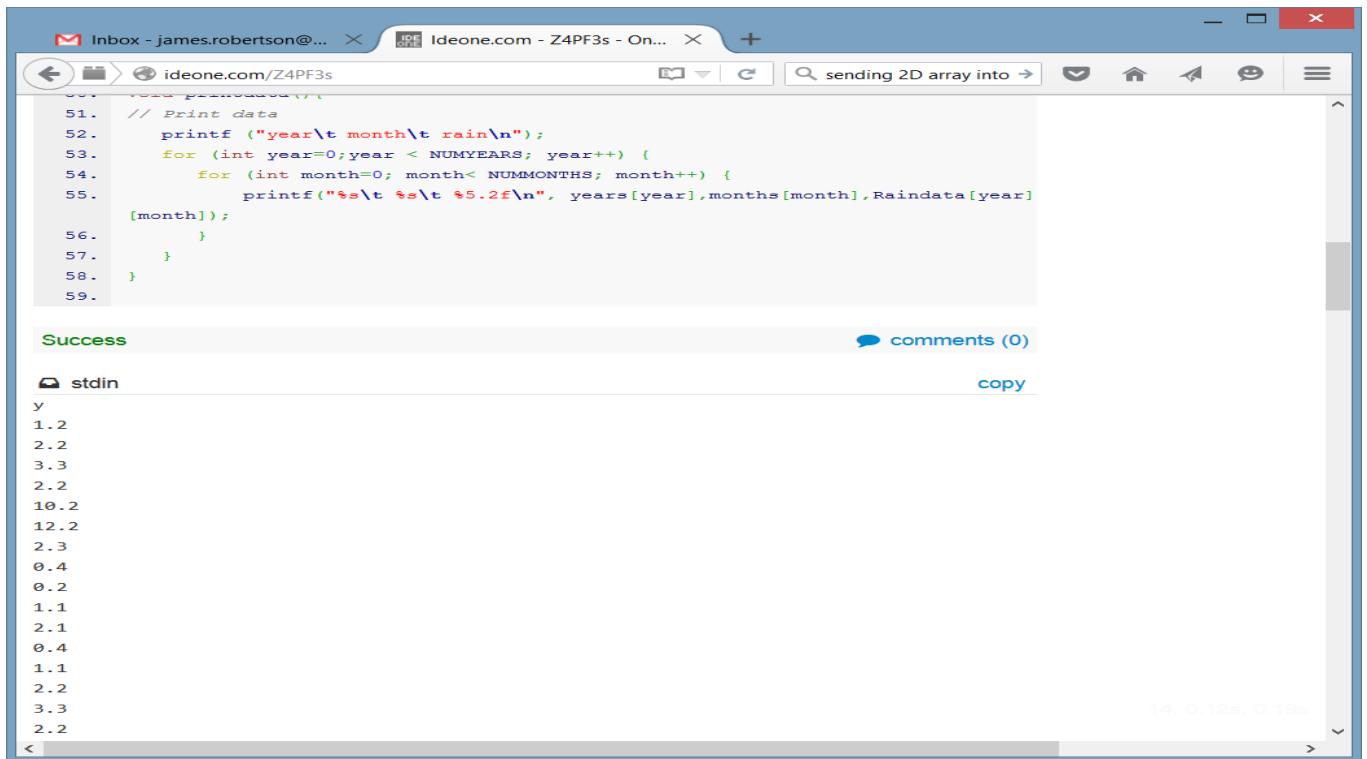

```

        }
    }
// Function to printdata
void printdata(){
// Print data
    printf ("year\t month\t rain\n");
    for (int year=0;year < NUMYEARS; year++) {
        for (int month=0; month< NUMMONTHS; month++) {
            printf("%s\t %s\t %5.2f\n",
years[year],months[month],Raindata[year] [month]);
        }
    }
}

```

Setting up the code and the input parameters in ideone.com:

You can change these values to any valid integer values to match your test cases.

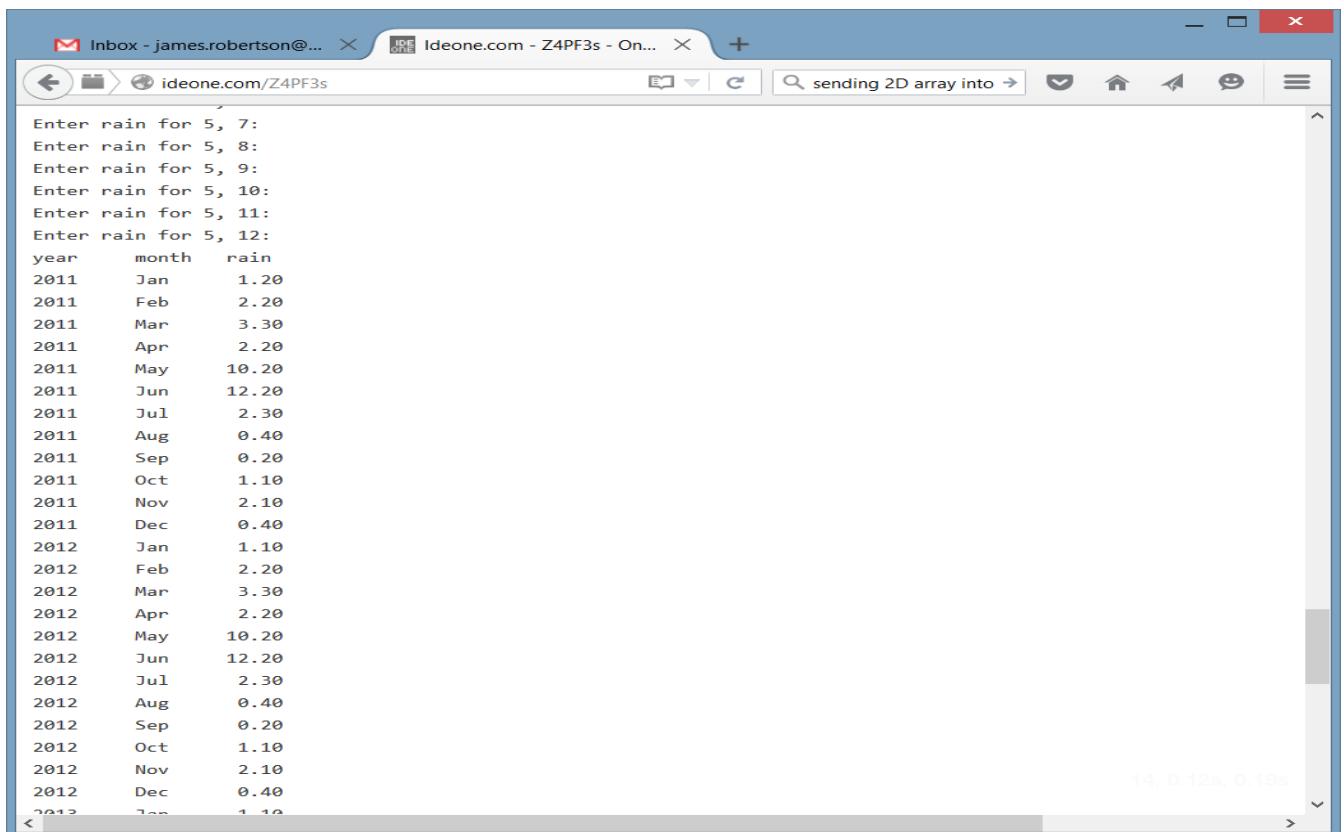

The screenshot shows a browser window with the URL ideone.com/0parRt. The page displays a C program with line numbers 23 to 53. The code defines a `printdata` function that prints a table of rainfall data and an `inputdata` function that reads rainfall data from the user. The browser's status bar at the bottom right shows "14, 0.90s, 1.02s".

```

23.     // Call Function to display data
24.     printdata();
25. }
26. else {
27.     printf("No data was input at this time\n");
28. }
29. printf("Please try the Precipitation program again. \n");
30. return 0;
31. }
32. // function to inputdata
33. void inputdata() {
34.     /* variable definition: */
35.     float Rain=1.0;
36.     // Input Data
37.     for (int year=0;year < NUMYEARS; year++) {
38.         for (int month=0; month< NUMMONTHS; month++) {
39.             printf("Enter rain for %d, %d:\n", year+1, month+1);
40.             scanf("%f", &Rain);
41.             Raindata[year] [month]=Rain;
42.         }
43.     }
44. }
45. // Function to printdata
46. void printdata(){
47. // Print data
48.     printf ("year\t month\t rain\n");
49.     for (int year=0;year < NUMYEARS; year++) {
50.         for (int month=0; month< NUMMONTHS; month++) {
51.             printf("%s\t %s\t %5.2f\n", years[year],months[month],Raindata[year]
[month]);
52.         }
53.     }
}

```

Results from running the programming at ideone.com



Code (C):

```
51. // Print data
52. printf ("year\t month\t rain\n");
53. for (int year=0;year < NUMYEARS; year++) {
54.     for (int month=0; month< NUMMONTHS; month++) {
55.         printf("%s\t %s\t %5.2f\n", years[year],months[month],Raindata[year]
56. [month]);
57.     }
58. }
59.
```

Output:

```
Success
copy
stdin
y
1.2
2.2
3.3
2.2
10.2
12.2
2.3
0.4
0.2
1.1
2.1
0.4
1.1
2.2
3.3
2.2
```


Code (C):

```
Enter rain for 5, 7:
Enter rain for 5, 8:
Enter rain for 5, 9:
Enter rain for 5, 10:
Enter rain for 5, 11:
Enter rain for 5, 12:
year      month      rain
2011      Jan       1.20
2011      Feb       2.20
2011      Mar       3.30
2011      Apr       2.20
2011      May       10.20
2011      Jun       12.20
2011      Jul       2.30
2011      Aug       0.40
2011      Sep       0.20
2011      Oct       1.10
2011      Nov       2.10
2011      Dec       0.40
2012      Jan       1.10
2012      Feb       2.20
2012      Mar       3.30
2012      Apr       2.20
2012      May       10.20
2012      Jun       12.20
2012      Jul       2.30
2012      Aug       0.40
2012      Sep       0.20
2012      Oct       1.10
2012      Nov       2.10
2012      Dec       0.40
2013      Jan       1.10
```

Learning Exercises for you to complete

1. Modify the program to add a function to sum the rainfall for each year. (Hint: you need to sum for each year. You can do this using a looping structure). Support your experimentation with screen captures of executing the new code.
2. Enhance the program to allow the user to enter another meteorological element such as windspeed (e.g. 2.4 mph). Note, the user should be able to enter both rainfall and windspeed in your new implementation. Support your experimentation with screen captures of executing the new code.
3. Prepare a new test table with at least 2 distinct test cases listing input and expected output for the code you created after step 2.
4. What happens if you change the NUMMONTHS and NUMYEARS definitions to other values? Be sure to use both lower and higher values. Describe and implement fixes for any issues if errors results. Support your experimentation with screen captures of executing the new code.

Grading guidelines

Submission	Points
Successfully demonstrates execution of this lab with online compiler. Includes a screen capture.	2
Modifies the code to add a function to sum the rainfall for each year. Support your experimentation with screen captures of executing the new code	2
Enhances the program to allow the user to enter another meteorological element such as windspeed (e.g. 2.4 mph). Support your experimentation with screen captures of executing the new code.	2
Provides a new test table with at least 2 distinct test cases listing input and expected output for the code you created after step 2.	1
Describes what would happen if you change the NUMMONTHS and NUMYEARS definitions to other values? Applies both lower and higher values. Describes and implements fixes for any issues if errors results. Support your experimentation with screen captures of executing the new code.	2
Document is well-organized, and contains minimal spelling and grammatical errors.	1
Total	10